论文标题
Spaic:基于尖峰的人工智能计算框架
SPAIC: A Spike-based Artificial Intelligence Computing Framework
论文作者
论文摘要
神经形态计算是一个新兴的研究领域,旨在通过整合来自神经科学和深度学习等多学科的理论和技术来开发新的智能系统。当前,已经为相关字段开发了各种软件框架,但是缺乏专门用于基于Spike的计算模型和算法的有效框架。在这项工作中,我们提出了一个基于Python的尖峰神经网络(SNN)模拟和培训框架,又名Spaic,旨在支持脑中启发的模型和算法研究,并与深度学习和神经科学的特征集成在一起。为了整合两个压倒性学科的不同方法,以及灵活性和效率之间的平衡,Spaic是通过神经科学风格的前端和深度学习后端结构设计的。我们提供了广泛的示例,包括神经回路模拟,深入的SNN学习和神经形态应用,展示了简洁的编码样式和框架的广泛可用性。 Spaic是一个基于尖峰的人工智能计算平台,它将显着促进新模型,理论和应用的设计,原型和验证。具有用户友好,灵活和高性能,它将有助于加快神经形态计算研究的快速增长和广泛的适用性。
Neuromorphic computing is an emerging research field that aims to develop new intelligent systems by integrating theories and technologies from multi-disciplines such as neuroscience and deep learning. Currently, there have been various software frameworks developed for the related fields, but there is a lack of an efficient framework dedicated for spike-based computing models and algorithms. In this work, we present a Python based spiking neural network (SNN) simulation and training framework, aka SPAIC that aims to support brain-inspired model and algorithm researches integrated with features from both deep learning and neuroscience. To integrate different methodologies from the two overwhelming disciplines, and balance between flexibility and efficiency, SPAIC is designed with neuroscience-style frontend and deep learning backend structure. We provide a wide range of examples including neural circuits Simulation, deep SNN learning and neuromorphic applications, demonstrating the concise coding style and wide usability of our framework. The SPAIC is a dedicated spike-based artificial intelligence computing platform, which will significantly facilitate the design, prototype and validation of new models, theories and applications. Being user-friendly, flexible and high-performance, it will help accelerate the rapid growth and wide applicability of neuromorphic computing research.