论文标题

使用Caenorhabditis的自动新闻偏见分类器灵感的递归反馈网络体系结构

An Automated News Bias Classifier Using Caenorhabditis Elegans Inspired Recursive Feedback Network Architecture

论文作者

Sridharan, Agastya, S, Natarajan

论文摘要

对新闻文章的政治偏见进行分类的传统方法未能产生准确的,可推广的结果。 CNN和DNN上的前提的现有网络缺乏识别和推断诸如单词选择,上下文和演示文稿之类的微妙指标的模型。在本文中,我们提出了一个网络体系结构,该网络体系结构可以在为文章分配偏见分类时达到人类级别的准确性。基础模型基于新型的网格神经网络(MNN),该结构可实现网格中任意两个神经元之间的反馈和馈电突触连接。 MNN ONTININANE六个网络配置,利用基于Bernoulli的随机采样,预训练的DNN和以C. exkemans nematode建模的网络。该模型接受了从Allsides.com上刮除的一千多篇文章的培训,这些文章被标记为表明政治偏见。然后使用适合反馈神经结构的遗传算法进化网络的参数。最后,最佳性能模型应用于美国的五个流行新闻来源,在为期五十天的试验中,以量化其展示的文章中的政治偏见。我们希望我们的项目能够刺激NLP任务的生物解决方案研究,并为公民提供准确的工具,以了解他们消耗的文章中的微妙偏见。

Traditional approaches to classify the political bias of news articles have failed to generate accurate, generalizable results. Existing networks premised on CNNs and DNNs lack a model to identify and extrapolate subtle indicators of bias like word choice, context, and presentation. In this paper, we propose a network architecture that achieves human-level accuracy in assigning bias classifications to articles. The underlying model is based on a novel Mesh Neural Network (MNN),this structure enables feedback and feedforward synaptic connections between any two neurons in the mesh. The MNN ontains six network configurations that utilize Bernoulli based random sampling, pre-trained DNNs, and a network modelled after the C. Elegans nematode. The model is trained on over ten-thousand articles scraped from AllSides.com which are labelled to indicate political bias. The parameters of the network are then evolved using a genetic algorithm suited to the feedback neural structure. Finally, the best performing model is applied to five popular news sources in the United States over a fifty-day trial to quantify political biases in the articles they display. We hope our project can spur research into biological solutions for NLP tasks and provide accurate tools for citizens to understand subtle biases in the articles they consume.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源