论文标题

不对称的可伸缩横向模式哈希

Asymmetric Scalable Cross-modal Hashing

论文作者

Li, Wenyun, Pun, Chi-Man

论文摘要

跨模式哈希是解决大型多媒体检索问题的成功方法。提出了许多基于矩阵分解的哈希方法。但是,现有的方法仍然在一些问题上遇到困难,例如如何有效地生成二元代码,而不是直接放松其连续性。此外,大多数现有方法选择使用$ n \ times n $相似性矩阵进行优化,这使得内存和计算无法承受。在本文中,我们提出了一种新型的不对称可伸缩式模式哈希(ASCMH)来解决这些问题。它首先引入了集体矩阵分解,从不同模态的内核特征中学习了一个共同的潜在空间,然后将相似性矩阵优化转换为距离距离距离差异问题最小化的借助语义标签和共同的潜在空间。因此,$ n \ times n $不对称优化的计算复杂性已得到缓解。在一系列哈希码中,我们还采用了标签信息的正交约束,这对于搜索准确性是必不可少的。因此,可以大大降低计算的冗余。为了有效的优化并可扩展到大规模数据集,我们采用了两步方法,而不是同时优化。在三个基准数据集上进行了广泛的实验:Wiki,Mirflickr-25k和NUS范围内,表明我们的ASCMH在准确性和效率方面表现出了最先进的跨模式散列方法。

Cross-modal hashing is a successful method to solve large-scale multimedia retrieval issue. A lot of matrix factorization-based hashing methods are proposed. However, the existing methods still struggle with a few problems, such as how to generate the binary codes efficiently rather than directly relax them to continuity. In addition, most of the existing methods choose to use an $n\times n$ similarity matrix for optimization, which makes the memory and computation unaffordable. In this paper we propose a novel Asymmetric Scalable Cross-Modal Hashing (ASCMH) to address these issues. It firstly introduces a collective matrix factorization to learn a common latent space from the kernelized features of different modalities, and then transforms the similarity matrix optimization to a distance-distance difference problem minimization with the help of semantic labels and common latent space. Hence, the computational complexity of the $n\times n$ asymmetric optimization is relieved. In the generation of hash codes we also employ an orthogonal constraint of label information, which is indispensable for search accuracy. So the redundancy of computation can be much reduced. For efficient optimization and scalable to large-scale datasets, we adopt the two-step approach rather than optimizing simultaneously. Extensive experiments on three benchmark datasets: Wiki, MIRFlickr-25K, and NUS-WIDE, demonstrate that our ASCMH outperforms the state-of-the-art cross-modal hashing methods in terms of accuracy and efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源