论文标题

关键框架辅助混合编码,用于影像型压缩视频传感

Key frames assisted hybrid encoding for photorealistic compressive video sensing

论文作者

Huang, Honghao, Teng, Jiajie, Liang, Yu, Hu, Chengyang, Chen, Minghua, Yang, Sigang, Chen, Hongwei

论文摘要

快照压缩成像(SCI)将高速场景视频编码为快照测量,然后计算进行重建,从而可以有效地高维数据获取。正在研究许多算法,从基于正规化的优化和深度学习,以提高重建质量,但仍受到标准SCI范式的不足和信息缺乏的性质的限制。为了克服这些缺点,我们提出了一个新的关键帧辅助混合编码范式,用于压缩视频感测,称为KH-CVS,或者可以捕获短曝光的关键框架,而无需编码和长期曝光编码的压缩框架,以共同重建现实主义的视频。通过使用光流和空间翘曲,构建了深层卷积神经网络框架,以整合这两种类型的框架的好处。我们开发的关于原型的模拟和真实数据的广泛实验验证了所提出的方法的优越性。

Snapshot compressive imaging (SCI) encodes high-speed scene video into a snapshot measurement and then computationally makes reconstructions, allowing for efficient high-dimensional data acquisition. Numerous algorithms, ranging from regularization-based optimization and deep learning, are being investigated to improve reconstruction quality, but they are still limited by the ill-posed and information-deficient nature of the standard SCI paradigm. To overcome these drawbacks, we propose a new key frames assisted hybrid encoding paradigm for compressive video sensing, termed KH-CVS, that alternatively captures short-exposure key frames without coding and long-exposure encoded compressive frames to jointly reconstruct photorealistic video. With the use of optical flow and spatial warping, a deep convolutional neural network framework is constructed to integrate the benefits of these two types of frames. Extensive experiments on both simulations and real data from the prototype we developed verify the superiority of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源