论文标题
非自动玻色子采样动力学中的区分性过渡
Distinguishability Transitions in Non-Unitary Boson Sampling Dynamics
论文作者
论文摘要
我们发现新颖的转变,其特征是以平等时间($ \ MATHCAL {PT} $)对称性的非独立动力学中玻色子的区分性。我们表明,$ \ Mathcal {pt} $对称破坏,这是一种在非富米开放系统中的唯一过渡,增强了可以将玻色子视为可区分的区域。这意味着经典计算机可以通过对可区分颗粒的分布进行采样,从而有效地采样了玻色子分布。在$ \ MATHCAL {PT} $ - 对称阶段中,我们发现了一个动力过渡,当玻色子最初放在远处的位置时,玻色子的分布与可分辨颗粒的分布会偏离可区分的颗粒。如果系统输入$ \ MATHCAL {pt} $ - 断裂的相位,则突然延长了过渡的阈值时间,因为每个玻色子的动力学在$ \ Mathcal {pt} $中是扩散的(弹道) - 损坏($ \ nathcal {pt} $ - 对称)阶段。此外,$ \ Mathcal {pt} $ - 破碎相位也表现出较长的时间尺度的明显动力过渡,玻色子再次变得可区分。这种过渡,因此长时间的采样玻色子的经典简单性对于通用后选择的非单身量子动力学是正确的,而在孤立的量子系统的单一动力学中则不存在。 $ \ MATHCAL {PT} $对称破坏也可以根据基于矩阵的等级的经典算法的效率来表征,该矩阵的等级可以(不能)在$ \ MATHCAL {pt} $的长期策略中有效计算光子分布($ \ Mathcal bregal($ \ nathcal)($ \ \ nathcal {pt pt ppt} $ - symsmetric)。
We discover novel transitions characterized by distinguishability of bosons in non-unitary dynamics with parity-time ($\mathcal{PT}$) symmetry. We show that $\mathcal{PT}$ symmetry breaking, a unique transition in non-Hermitian open systems, enhances regions in which bosons can be regarded as distinguishable. This means that classical computers can sample the boson distributions efficiently in these regions by sampling the distribution of distinguishable particles. In a $\mathcal{PT}$-symmetric phase, we find one dynamical transition upon which the distribution of bosons deviates from that of distinguishable particles, when bosons are initially put at distant sites. If the system enters a $\mathcal{PT}$-broken phase, the threshold time for the transition is suddenly prolonged, since dynamics of each boson is diffusive (ballistic) in the $\mathcal{PT}$-broken ($\mathcal{PT}$-symmetric) phase. Furthermore, the $\mathcal{PT}$-broken phase also exhibits a notable dynamical transition on a longer time scale, at which the bosons again become distinguishable. This transition, and hence the classical easiness of sampling bosons in long times, are true for generic postselected non-unitary quantum dynamics, while it is absent in unitary dynamics of isolated quantum systems. $\mathcal{PT}$ symmetry breaking can also be characterized by the efficiency of a classical algorithm based on the rank of matrices, which can (cannot) efficiently compute the photon distribution in the long-time regime of the $\mathcal{PT}$-broken ($\mathcal{PT}$-symmetric) phase.