论文标题

表征$ s $ -Artinianness通过统一性

Characterizing $S$-Artinianness by uniformity

论文作者

Zhang, Xiaolei, Qi, Wei

论文摘要

令$ r $为具有身份的可交换戒指,而$ s $是$ r $的乘法子集。如果有$ r $ -Module $ m $ $ $ $ $ s $ $ s $ - $ - $ u $ - $ s $ -Artinian用于缩写)模块,如果S $中有$ s \,以至于任何下降的$ m $ $ $ $ $ s $ s $ s $ s $ sub-s $ as $ s $。 $ u $ - $ s $ -Artinian模块的特征是($ s $ -min) - 条件和$ u $ - $ s $ -s $ -cofinite Properties。如果$ r $本身是$ u $ - $ s $ -S $ -ARTINIAN模块,我们称为$ u $ r $是$ u $ - $ s $ -Artinian戒指,然后证明任何$ u $ - $ s $ s $ s $ semisimple ring is $ u $ u $ - $ s $ s $ - 阿蒂尼亚人。事实证明,$ r $是$ u $ - $ s $ -Artinian,仅当$ r $是$ r $是$ u $ - $ u $ - $ s $ -noetherian,$ u $ - $ u $ - $ s $ -s $ - jacobson gadical $ {\ rm jac} _s jac} _s _s(r)$ r $ r $是$ s $ s $ s $ - nillpotent and $ rm/jac a jac(rm jac a jac(rm) $ u $ - $ s/{\ rm jac} _s(r)$ - 半圣戒指。此外,还提供了一些示例来区分Artinian戒指,$ U $ - $ S $ -ARTINIAN RING和$ S $ -ARTINIAN RINGS。

Let $R$ be a commutative ring with identity and $S$ a multiplicative subset of $R$. An $R$-module $M$ is said to be a uniformly $S$-Artinian ($u$-$S$-Artinian for abbreviation) module if there is $s\in S$ such that any descending chain of submodules of $M$ is $S$-stationary with respect to $s$. $u$-$S$-Artinian modules are characterized in terms of ($S$-MIN)-conditions and $u$-$S$-cofinite properties. We call a ring $R$ is a $u$-$S$-Artinian ring if $R$ itself is a $u$-$S$-Artinian module, and then show that any $u$-$S$-semisimple ring is $u$-$S$-Artinian. It is proved that a ring $R$ is $u$-$S$-Artinian if and only if $R$ is $u$-$S$-Noetherian, the $u$-$S$-Jacobson radical ${\rm Jac}_S(R)$ of $R$ is $S$-nilpotent and $R/{\rm Jac}_S(R)$ is a $u$-$S/{\rm Jac}_S(R)$-semisimple ring. Besides, some examples are given to distinguish Artinian rings, $u$-$S$-Artinian rings and $S$-Artinian rings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源