论文标题
整个人类心脏力学的全面且生物物理详细的计算模型
A comprehensive and biophysically detailed computational model of the whole human heart electromechanics
论文作者
论文摘要
尽管对心室机电进行了广泛的研究,但最近才解决四腔心脏模型。但是,大多数作品但是忽略了心房收缩。确实,由于心房的特征是受心室功能影响的复杂生理学,因此开发了能够捕获生理心房功能和室内室内相互作用的计算模型非常具有挑战性。在本文中,我们提出了整个人心脏的生物物理详细机电模型,该模型考虑了心房和心室收缩。我们的模型包括:i)解剖学上准确的全心几何形状; ii)全面的心肌体系结构; iii)活性力产生的生物物理详细微观模型; iv)循环系统的0D闭环模型; v)不同核心模型之间的基本相互作用; vi)每个心脏区域的特定本构定律和模型参数。关于数值离散化,我们提出了一个有效的分离间隔阶段的方案,我们采用了最近开发的稳定技术,对于在四腔室场景中获得稳定的配方至关重要。我们能够在压力卷回路,压力的时间演变,体积和通量的时间演变以及三维心脏变形方面重现所有心脏腔室的健康心脏功能,并具有前所未有的匹配(据我们所知)。我们还通过比较模型中有和没有这些特征的结果来比较使用和没有这些特征的结果来考虑心房收缩,纤维拉伸速率反馈和合适的稳定技术的重要性。所提出的模型代表了IHEART ERC项目的最新机电模型,并且是迈向建立基于物理的人类心脏双胞胎的基本步骤。
While ventricular electromechanics is extensively studied, four-chamber heart models have only been addressed recently; most of these works however neglect atrial contraction. Indeed, as atria are characterized by a complex physiology influenced by the ventricular function, developing computational models able to capture the physiological atrial function and atrioventricular interaction is very challenging. In this paper, we propose a biophysically detailed electromechanical model of the whole human heart that considers both atrial and ventricular contraction. Our model includes: i) an anatomically accurate whole-heart geometry; ii) a comprehensive myocardial fiber architecture; iii) a biophysically detailed microscale model for the active force generation; iv) a 0D closed-loop model of the circulatory system; v) the fundamental interactions among the different core models; vi) specific constitutive laws and model parameters for each cardiac region. Concerning the numerical discretization, we propose an efficient segregated-intergrid-staggered scheme and we employ recently developed stabilization techniques that are crucial to obtain a stable formulation in a four-chamber scenario. We are able to reproduce the healthy cardiac function for all the heart chambers, in terms of pressure-volume loops, time evolution of pressures, volumes and fluxes, and three-dimensional cardiac deformation, with unprecedented matching (to the best of our knowledge) with the expected physiology. We also show the importance of considering atrial contraction, fibers-stretch-rate feedback and suitable stabilization techniques, by comparing the results obtained with and without these features in the model. The proposed model represents the state-of-the-art electromechanical model of the iHEART ERC project and is a fundamental step toward the building of physics-based digital twins of the human heart.