论文标题
高斯总和的等分分配和独立性
Equidistribution and independence of Gauss sums
论文作者
论文摘要
我们证明了在有限字段上与$ r $ r $可变乘法字符相关的高斯总和的一般独立均衡性结果,该字段概括了高斯和雅各比总和以前的几个均衡性结果。作为应用程序,我们表明,这些高斯总和满足的任何关系都必须是共轭关系$ g(χ)G(\ OverlineC)= \ PM Q $,Galois共轭不变性和Hasse-Davenport产品公式的组合。
We prove a general independent equidistribution result for Gauss sums associated to $n$ monomials in $r$ variable multiplicative characters over a finite field, which generalizes several previous equidistribution results for Gauss and Jacobi sums. As an application, we show that any relation satisfied by these Gauss sums must be a combination of the conjugation relation $G(χ)G(\overlineχ)=\pm q$, Galois conjugation invariance and the Hasse-Davenport product formula.