论文标题
纠缠熵和非本地二元性:量子通道和量子代数
Entanglement entropy and non-local duality: quantum channels and quantum algebras
论文作者
论文摘要
我们使用横向场ISING模型中存在的Kramers-Wannier二重性作为我们的示例,研究了二元性熵熵的转换。当地自由度之间的纠缠熵并不能被双重性保留。取而代之的是,可以将纠缠的国家映射到没有地方纠缠的国家。为了了解这种纠缠的命运,我们考虑了两个定量描述自由度及其在二元性下的转变。第一个涉及KRAUS操作员将部分迹线作为量子通道实现,而第二个则利用代数方法来实现量子力学,其中自由度在亚代词中被编码。使用两种方法,我们表明当地自由程度的纠缠并没有丢失。取而代之的是,它通过二元转换转移到非本地自由度。
We investigate the transformation of entanglement entropy under dualities, using the Kramers-Wannier duality present in the transverse field Ising model as our example. Entanglement entropy between local spin degrees of freedom is not generically preserved by the duality; instead, entangled states may be mapped to states with no local entanglement. To understand the fate of this entanglement, we consider two quantitative descriptions of degrees of freedom and their transformation under duality. The first involves Kraus operators implementing the partial trace as a quantum channel, while the second utilizes the algebraic approach to quantum mechanics, where degrees of freedom are encoded in subalgebras. Using both approaches, we show that entanglement of local degrees of freedom is not lost; instead it is transferred to non-local degrees of freedom by the duality transformation.