论文标题
关于SU(2)Yang-Mills-dirac方程的恒定解决方案
On constant solutions of SU(2) Yang-Mills-Dirac equations
论文作者
论文摘要
首次给出了Minkowski Space中的SU(2)仪表对称性的Yang-Mills-DIRAC方程的所有常数解决方案的完整分类。提出了所有解决方案的明确形式。我们使用真实和复杂矩阵的双曲线奇异值分解方法,以及组SU(2)的组(3)的两片覆盖物。在零电势的退化情况下,我们使用dirac方程的伪独立对称性。可以使用恒定溶液作为零近似的一系列扰动理论来考虑非稳定溶液。编写了扩展中第一个近似值的方程式。
For the first time, a complete classification of all constant solutions of the Yang-Mills-Dirac equations with SU(2) gauge symmetry in Minkowski space ${\mathbb R}^{1,3}$ is given. The explicit form of all solutions is presented. We use the method of hyperbolic singular value decomposition of real and complex matrices and the two-sheeted covering of the group SO(3) by the group SU(2). In the degenerate case of zero potential, we use the pseudo-unitary symmetry of the Dirac equation. Nonconstant solutions can be considered in the form of series of perturbation theory using constant solutions as a zeroth approximation; the equations for the first approximation in the expansion are written.