论文标题

Ising模型中Ursell函数的单调性

Monotonicity of Ursell functions in the Ising model

论文作者

Camia, Federico, Jiang, Jianping, Newman, Charles M.

论文摘要

在本文中,我们考虑具有铁磁相互作用的模型。我们证明ursell函数$ u_ {2k} $满意:$( - 1)^{k-1} u_ {2k} $在每种交互中都在增加。作为一个应用程序,我们证明了Nishimori的1983年猜想和Griffiths关于ISING模型的分区功能,具有复杂的外部字段$ H $:它最接近的零(在变量$ H $中)向原点移动,作为任意交互的增加。

In this paper, we consider Ising models with ferromagnetic pair interactions. We prove that the Ursell functions $u_{2k}$ satisfy: $(-1)^{k-1}u_{2k}$ is increasing in each interaction. As an application, we prove a 1983 conjecture by Nishimori and Griffiths about the partition function of the Ising model with complex external field $h$: its closest zero to the origin (in the variable $h$) moves towards the origin as an arbitrary interaction increases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源