论文标题

机器学习加速鉴定可去角色的二维材料

Machine-learning accelerated identification of exfoliable two-dimensional materials

论文作者

Vahdat, Mohammad Tohidi, Varoon, Kumar Agrawal, Pizzi, Giovanni

论文摘要

二维(2D)材料一直是最近研究的核心重点,因为它们拥有各种特性,使它们对基本科学和应用都有吸引力。因此,至关重要的是,能够准确有效地识别是否是由较弱的结合能将层组合在一起形成的,因此可以将其剥落成2D材料。在这项工作中,我们开发了一种机器学习方法(ML)方法,该方法与快速初步的几何筛选相结合,能够有效地识别潜在的可剥落的材料。从晶体结构的描述符的组合开始,我们可以解决其中的一部分,这些子集对于准确的预测至关重要。我们的最终ML模型基于随机森林分类器,其召回率很高,为98 \%。使用外形加性解释(SHAP)分析,我们还提供了模型的五个最重要变量的直观解释。最后,我们将最佳ML模型的性能与使用相同描述符的深神经网络体系结构进行了比较。为了使我们的算法和模型易于访问,我们在材料云门户网站上发布了一个在线工具,该工具仅需要散装3D晶体结构作为输入。因此,我们的工具提供了一种实用而直接的方法来评估是否可以将任何3D化合物剥落成2D层。

Two-dimensional (2D) materials have been a central focus of recent research because they host a variety of properties, making them attractive both for fundamental science and for applications. It is thus crucial to be able to identify accurately and efficiently if bulk three-dimensional (3D) materials are formed by layers held together by a weak binding energy that, thus, can be potentially exfoliated into 2D materials. In this work, we develop a machine-learning (ML) approach that, combined with a fast preliminary geometrical screening, is able to efficiently identify potentially exfoliable materials. Starting from a combination of descriptors for crystal structures, we work out a subset of them that are crucial for accurate predictions. Our final ML model, based on a random forest classifier, has a very high recall of 98\%. Using a SHapely Additive exPlanations (SHAP) analysis, we also provide an intuitive explanation of the five most important variables of the model. Finally, we compare the performance of our best ML model with a deep neural network architecture using the same descriptors. To make our algorithms and models easily accessible, we publish an online tool on the Materials Cloud portal that only requires a bulk 3D crystal structure as input. Our tool thus provides a practical yet straightforward approach to assess whether any 3D compound can be exfoliated into 2D layers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源