论文标题

云环境中有效的资源管理

Efficient Resource Management in Cloud Environment

论文作者

Swain, Smruti Rekha, Singh, Ashutosh Kumar, Lee, Chung Nan

论文摘要

在云计算中,资源管理在数据中心中起着重要作用,它直接取决于应用程序工作负载。云计算提供了各种服务,例如基础架构(IAAS),服务(PAAS)和软件作为服务(SAAS),以提供使用付费按次使用方法的云用户的计算,网络和存储能力。资源分配是一种以前的解决方案,可解决各种苛刻的情况,例如下/超载处理,资源浪费,负载平衡,服务质量(QoS)违规,VM迁移等等。虚拟机放置(VMP)的主要目的是将虚拟机(VM)映射到物理机器(PMS),以便可以将PMS用于其最大效率,在这些效率下,未打断已经有效的VM。它提供了必须完成的实时VM迁移列表,以获取最佳解决方案并在更大程度上减少能源消耗。效率低下的VMP导致资源浪费,过多的能源消耗以及增加数据中心的整体运营成本。在这种情况下,本文对云环境中的资源管理方案进行了广泛的调查。分析了用于资源管理,当前基于机器学习的资源分配策略的概念方案以及物理资源分配无效的基本问题。此后,解释了对云资源管理领域基于机器学习机制中现有技术的完整调查。最终,本文探讨并结论了与云环境中资源管理相关的明显挑战和未来研究指南。

In cloud computing resource management plays a significant role in data centres and it is directly dependent on the application workload. Various services such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) are offered by cloud computing to provide compute, network, and storage capabilities to the cloud users utilizing the pay-per-usage approach. Resource allocation is a prior solution to address various demanding situations like the under/overload handling, resource wastage, load balancing, Quality-of-Services (QoS) violations, VM migration and many more. The primary aim of Virtual Machine Placement (VMP) is mapping of Virtual Machines (VMs) to physical machines (PMs), such that the PMs may be utilized to their maximum efficiency, where the already active VMs are not to be interrupted. It provides a list of live VM migrations that must be accomplished to get the optimum solution and reduces energy consumption to a larger extent. The inefficient VMP leads to wastage of resources, excessive energy consumption and also increase overall operational cost of the data center. On this context, this article provides an extensive survey of resource management schemes in cloud environment. A conceptual scheme for resource management, grouping of current machine learning based resource allocation strategies, and fundamental problems of ineffective distribution of physical resources are analyzed. Thereafter, a complete survey of existing techniques in machine learning based mechanisms in the field of cloud resource management are explained. Ultimately, the paper explores and concludes distinct approaching challenges and future research guidelines associated to resource management in cloud environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源