论文标题
混合模型和基于学习的自适应导航过滤器
A Hybrid Model and Learning-Based Adaptive Navigation Filter
论文作者
论文摘要
惯性导航系统与全球导航卫星系统之间的融合经常用于许多平台,例如无人机,陆地车辆和船舶船只。融合通常是在基于模型的扩展Kalman滤波器框架中进行的。过滤器的关键参数之一是过程噪声协方差。它负责实时解决方案的准确性,因为它考虑了车辆动力学不确定性和惯性传感器质量。在大多数情况下,过程噪声被认为是恒定的协方差。然而,由于车辆动力学和传感器测量变化在整个轨迹中的变化,过程噪声协方差可能会发生变化。为了应对这种情况,文献中建议了几种基于自适应模型的卡尔曼过滤器。在本文中,我们提出了一个混合模型和基于学习的自适应导航过滤器。我们依靠基于模型的Kalman滤波器并设计一个深神经网络模型来调整瞬时系统噪声协方差矩阵,仅基于惯性传感器读数。一旦学习了过程噪声协方差,它就会插入建立的基于模型的Kalman滤波器中。得出提出的混合框架后,介绍了使用四极管的现场实验结果,并给出了与基于模型的自适应方法进行比较。我们表明,所提出的方法在位置误差中获得了25%的改善。此外,提出的混合学习方法可以在任何导航过滤器以及任何相关估计问题中使用。
The fusion between an inertial navigation system and global navigation satellite systems is regularly used in many platforms such as drones, land vehicles, and marine vessels. The fusion is commonly carried out in a model-based extended Kalman filter framework. One of the critical parameters of the filter is the process noise covariance. It is responsible for the real-time solution accuracy, as it considers both vehicle dynamics uncertainty and the inertial sensors quality. In most situations, the process noise is covariance assumed to be constant. Yet, due to vehicle dynamics and sensor measurement variations throughout the trajectory, the process noise covariance is subject to change. To cope with such situations, several adaptive model-based Kalman filters were suggested in the literature. In this paper, we propose a hybrid model and learning-based adaptive navigation filter. We rely on the model-based Kalman filter and design a deep neural network model to tune the momentary system noise covariance matrix, based only on the inertial sensor readings. Once the process noise covariance is learned, it is plugged into the well-established, model-based Kalman filter. After deriving the proposed hybrid framework, field experiment results using a quadrotor are presented and a comparison to model-based adaptive approaches is given. We show that the proposed method obtained an improvement of 25% in the position error. Furthermore, the proposed hybrid learning method can be used in any navigation filter and also in any relevant estimation problem.