论文标题
以参与者为中心的联合学习合作:游戏理论观点
Collaboration in Participant-Centric Federated Learning: A Game-Theoretical Perspective
论文作者
论文摘要
联合学习(FL)是一个有前途的分布式框架,用于保护用户隐私的同时,可以进行协作人工智能模型培训。引起大量研究关注的引导组件是激励机制刺激佛罗里达用户协作的设计。大多数作品采用以经纪人为中心的方法来帮助中央运营商吸引参与者并进一步获得训练有素的模型。很少有作品认为参与者之间以参与者为中心的合作来追求其共同利益的FL模型,这引起了以经纪人为中心的FL的激励机制设计的巨大差异。为了协调自私和异质的参与者,我们提出了一个新颖的分析框架,以激励以参与者为中心的佛罗里达有效和有效的合作。具体而言,我们分别提出了两个新颖的游戏模型,用于贡献贡献的FL(COFL)和贡献感知的FL(CAFL),其中后者实现了最低贡献阈值机制。我们进一步分析了COFL和CAFL游戏的NASH平衡的独特性和存在,以及设计有效的算法以实现平衡解决方案。广泛的绩效评估表明,COFL中存在自由骑行现象,通过使用优化的最低阈值的CAFL模型可以极大地缓解这种现象。
Federated learning (FL) is a promising distributed framework for collaborative artificial intelligence model training while protecting user privacy. A bootstrapping component that has attracted significant research attention is the design of incentive mechanism to stimulate user collaboration in FL. The majority of works adopt a broker-centric approach to help the central operator to attract participants and further obtain a well-trained model. Few works consider forging participant-centric collaboration among participants to pursue an FL model for their common interests, which induces dramatic differences in incentive mechanism design from the broker-centric FL. To coordinate the selfish and heterogeneous participants, we propose a novel analytic framework for incentivizing effective and efficient collaborations for participant-centric FL. Specifically, we respectively propose two novel game models for contribution-oblivious FL (COFL) and contribution-aware FL (CAFL), where the latter one implements a minimum contribution threshold mechanism. We further analyze the uniqueness and existence for Nash equilibrium of both COFL and CAFL games and design efficient algorithms to achieve equilibrium solutions. Extensive performance evaluations show that there exists free-riding phenomenon in COFL, which can be greatly alleviated through the adoption of CAFL model with the optimized minimum threshold.