论文标题
RA-DEPTH:分辨率自适应自我监督单眼估计
RA-Depth: Resolution Adaptive Self-Supervised Monocular Depth Estimation
论文作者
论文摘要
现有的自我监督的单眼深度估计方法可以摆脱昂贵的注释并取得令人鼓舞的结果。但是,当直接采用接受固定分辨率训练的模型以评估其他不同决议时,这些方法会遭受严重的性能降解。在本文中,我们通过学习场景深度的规模不变性,提出了一个分辨率自适应自我监督的单眼估计方法(RA-DEPTH)。具体而言,我们提出了一种简单而有效的数据增强方法,以生成具有任意尺度的同一场景的图像。然后,我们开发了一个双重高分辨率网络,该网络使用具有密集交互的多路径编码器和解码器来汇总多尺度特征,以进行准确的深度推断。最后,为了明确了解场景深度的规模不变性,我们在具有不同尺度的深度预测上制定了跨尺度深度一致性损失。对Kitti,Make3D和NYU-V2数据集进行了广泛的实验表明,RA-Depth不仅可以实现最新的性能,而且还表现出很好的分辨率适应能力。
Existing self-supervised monocular depth estimation methods can get rid of expensive annotations and achieve promising results. However, these methods suffer from severe performance degradation when directly adopting a model trained on a fixed resolution to evaluate at other different resolutions. In this paper, we propose a resolution adaptive self-supervised monocular depth estimation method (RA-Depth) by learning the scale invariance of the scene depth. Specifically, we propose a simple yet efficient data augmentation method to generate images with arbitrary scales for the same scene. Then, we develop a dual high-resolution network that uses the multi-path encoder and decoder with dense interactions to aggregate multi-scale features for accurate depth inference. Finally, to explicitly learn the scale invariance of the scene depth, we formulate a cross-scale depth consistency loss on depth predictions with different scales. Extensive experiments on the KITTI, Make3D and NYU-V2 datasets demonstrate that RA-Depth not only achieves state-of-the-art performance, but also exhibits a good ability of resolution adaptation.