论文标题
关于$ h^{2,0} = 1 $积极特征的泰特猜想
On the Tate conjecture for divisors on varieties with $h^{2,0} = 1$ in positive characteristics
论文作者
论文摘要
我们证明,在Moduli上的温和假设下,对于Mod p降低具有$ h^{2,0} = 1 $的复杂射击品种的泰特猜想是“一般性的”。通过完善这一总体结果,我们在全局函数场上建立了BSD猜想的新案例,并为几何属1的一类普通类型表面的泰特猜想1。
We prove that the Tate conjecture for divisors is ''generically true'' for mod p reductions of complex projective varieties with $h^{2, 0} = 1$, under a mild assumption on moduli. By refining this general result, we establish a new case of the BSD conjecture over global function fields, and the Tate conjecture for a class of general type surfaces of geometric genus 1.