论文标题
结的扭矩和一致性小组和电缆
Torsion in the knot concordance group and cabling
论文作者
论文摘要
我们使用参与打结的浮子包装定义了在结组的扭转子组上定义的一个非平凡的mod 2值添加剂不变性。对于其内核中不包含的结,我们证明了它们的迭代$(\ text {odd},1)$ - 电缆在协和组中具有无限的订单,其中,许多无限的订单是无限的。此外,通过取$(2,1)的$ - 上述结的电缆,我们提出了一个无限的结系列,这些结与较强的结构片,但没有切成薄片。
We define a nontrivial mod 2 valued additive concordance invariant defined on the torsion subgroup of the knot concordance group using involutive knot Floer package. For knots not contained in its kernel, we prove that their iterated $(\text{odd},1)$-cables have infinite order in the concordance group and, among them, infinitely many are linearly independent. Furthermore, by taking $(2,1)$-cables of the aforementioned knots, we present an infinite family of knots which are strongly rationally slice but not slice.