论文标题

代数多种变形空间中的莎士兹地层

Shatz strata in algebraic versal deformation spaces

论文作者

Lin, Yinbang

论文摘要

在光滑的复杂射击曲线上,我们研究了一个代数的变形空间,具有连贯的捆的固定决定因素。代数复位变形空间分解为Shatz地层的不相交联合,即局部封闭的亚化基础化的亚化基础,该亚化学与常见的硬质纳拉西姆汉类型相结合。我们研究大型不稳定地层的几何形状和局部拓扑及其沿边界的行为。

Over a smooth complex projective curve, we study an algebraic versal deformation space with fixed determinant of a coherent sheaf. The algebraic versal deformation space decomposes into a disjoint union of Shatz strata, namely locally closed subschemes which parametrize coherent sheaves with common Harder-Narasimhan types. We study the geometry and local topology of large unstable strata and their behavior along boundaries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源