论文标题
紧凑的梯度爱因斯坦型歧管具有边界和恒定标态曲率
Compact gradient Einstein-type manifolds with boundary and constant scalar curvature
论文作者
论文摘要
受到$ V $静态歧管的研究的启发,在本文中,我们应用了Freitas和Gomes获得的最新结果(紧凑型梯度Einstein-Einstein-type带有边界的歧管,2022年),以证明紧凑型梯度梯度梯度结果具有无空的边界和恒定质量curvation curvation curvature curvation curvation curvation typer。作为梯度爱因斯坦类型歧管的特殊情况,我们还给出了$(m,ρ)$ - Quasi-Einstein歧管的刚性结果。
Inspired by the study of $V$-static manifold about classification, in this article, we apply the recent results obtained by Freitas and Gomes (Compact gradient Einstein-type manifolds with boundary, 2022) to prove the rigidity results for compact gradient Einstein-type manifolds with nonempty boundary and constant scalar curvature under some suitable pinching conditions. As a special case of gradient Einstein-type manifold, we also give a rigidity result of $(m,ρ)$-quasi-Einstein manifold with boundary.