论文标题
可扩展的量子逻辑光谱法
Scalable quantum logic spectroscopy
论文作者
论文摘要
在量子逻辑光谱(QLS)中,一种被困的离子被用作检测原本无法接近离子物种的状态的传感器。这将精度测量扩展到了更广泛的原子和分子系统,用于原子钟和基本物理测试等应用。在这里,我们开发了一种基于SchrödingerCat干涉仪的新技术,以解决将QLS缩放到较大离子数的问题。我们使用$^{25} \ text {mg}^+$逻辑离子和$^{27} \ text {al}^+$ spectroscopepocy ions的各种组合来演示此方法的基本功能。我们通过增加$^{25} \ text {mg}^+$ ions的数量来观察更高的检测效率。应用于多个$^{27} \ text {al}^+$,此方法将提高高智能光学时钟的稳定性,并可以启用Heisenberg限制的QLS。
In quantum logic spectroscopy (QLS), one species of trapped ion is used as a sensor to detect the state of an otherwise inaccessible ion species. This extends precision measurements to a broader class of atomic and molecular systems for applications like atomic clocks and tests of fundamental physics. Here, we develop a new technique based on a Schrödinger cat interferometer to address the problem of scaling QLS to larger ion numbers. We demonstrate the basic features of this method using various combinations of $^{25}\text{Mg}^+$ logic ions and $^{27}\text{Al}^+$ spectroscopy ions. We observe higher detection efficiency by increasing the number of $^{25}\text{Mg}^+$ ions. Applied to multiple $^{27}\text{Al}^+$, this method will improve the stability of high-accuracy optical clocks and could enable Heisenberg-limited QLS.