论文标题
均质多层网络的学位中心算法
Degree Centrality Algorithms For Homogeneous Multilayer Networks
论文作者
论文摘要
简单图形/网络的中心度度量明确定义,每种都具有许多主内存算法。但是,对于使用多种类型的实体和关系来建模复杂的数据集,简单的图并不理想。已经提出了多层网络(或MLN)来建模它们,并已被证明在许多方面更适合。由于没有直接在MLN上计算中心度度量的算法,因此现有的策略将MLN层降低(汇总或崩溃)使用Boolean和Or运算符将MLN层降低到简单网络。这种方法否定了MLN建模的好处,因为这些计算往往是昂贵的,而且还会导致结构和语义的丧失。在本文中,我们提出了基于启发式的算法,用于使用新提供的基于基于脱耦的方法的方法直接在MLN上进行计算中心度度量(特定于度假性)(即,即,不将其简化为简单图),该方法有效,结构和语言保存。我们建议使用基于网络解耦的方法来计算程度中心,并将准确性和精度与布尔或汇总均质MLN(HOMLN)进行比较。网络解耦方法可以利用并行性,并且与基于聚合的方法相比,它更有效。对大型合成和现实世界的数据集进行了广泛的实验分析,以验证我们提出的算法的准确性和效率。
Centrality measures for simple graphs/networks are well-defined and each has numerous main-memory algorithms. However, for modeling complex data sets with multiple types of entities and relationships, simple graphs are not ideal. Multilayer networks (or MLNs) have been proposed for modeling them and have been shown to be better suited in many ways. Since there are no algorithms for computing centrality measures directly on MLNs, existing strategies reduce (aggregate or collapse) the MLN layers to simple networks using Boolean AND or OR operators. This approach negates the benefits of MLN modeling as these computations tend to be expensive and furthermore results in loss of structure and semantics. In this paper, we propose heuristic-based algorithms for computing centrality measures (specifically, degree centrality) on MLNs directly (i.e., without reducing them to simple graphs) using a newly-proposed decoupling-based approach which is efficient as well as structure and semantics preserving. We propose multiple heuristics to calculate the degree centrality using the network decoupling-based approach and compare accuracy and precision with Boolean OR aggregated Homogeneous MLNs (HoMLN) for ground truth. The network decoupling approach can take advantage of parallelism and is more efficient compared to aggregation-based approaches. Extensive experimental analysis is performed on large synthetic and real-world data sets of varying characteristics to validate the accuracy and efficiency of our proposed algorithms.