论文标题
Z-ABSORBING C* - 代数的理性AF代数和KMS状态
Rationally AF algebras and KMS states of Z-absorbing C*-algebras
论文作者
论文摘要
为了实现江-su代数上的所有可能的kms捆绑,我们引入了一类C* - 代数,我们称其为合理的大约有限维度(RAF)。 Using these, we show that for a given proper simplex bundle $(S, π)$ with a singleton $π^{-1}(\{0\})$ and a unital separable monotracial C*-algebra $A$ absorbing the Jiang-Su algebra tensorially (for instance, the irrational rotation algebra), there exists a flow on $A$ whose KMS-bundle is异态至$(s,π)$。
In order to realize all possible KMS-bundles on the Jiang-Su algebra, we introduce a class of C*-algebras which we call rationally approximately finite dimensional (RAF). Using these, we show that for a given proper simplex bundle $(S, π)$ with a singleton $π^{-1}(\{0\})$ and a unital separable monotracial C*-algebra $A$ absorbing the Jiang-Su algebra tensorially (for instance, the irrational rotation algebra), there exists a flow on $A$ whose KMS-bundle is isomorphic to $(S, π)$.