论文标题
晶格序列空间和总结映射
Lattice sequence spaces and summing mappings
论文作者
论文摘要
这项研究的目的是推进有关积极求和运算符的理论。我们的重点在于检查正面可振紧序列的正面空间和无条件无条件p的序列的空间。我们将它们与正面弱P拟合序列的Banach晶格一起使用,以呈现和表征正(P; Q)的阳性运算符,正(P; Q) - 夏季和阳性Cohen(P; Q) - 核运算符。此外,我们根据序列空间的张量产物在张量产品之间定义的关联的NSOR操作员的连续性来描述这些类。
The objective of this study is to advance the theory concerning positive summing operators. Our focus lies in examining the space of positive strongly p-summable sequences and the space of positive unconditionally p-summable sequences. We utilize these in conjunction with the Banach lattice of positive weakly p-summable sequences to present and characterize the classes of positive strongly (p; q)-summing operators, positive (p; q)-summing, and positive Cohen (p; q)-nuclear operators. Additionally, we describe these classes in terms of the continuity of an associatedte nsor operator that is defined between tensor products of sequences spaces.