论文标题
机器人制定恶性刻板印象
Robots Enact Malignant Stereotypes
论文作者
论文摘要
刻板印象,偏见和歧视已在机器学习(ML)方法(例如计算机视觉(CV)[18,80],自然语言处理(NLP)[6]或在大图像和字幕模型(例如OpenAI剪辑)的情况下,已广泛记录下来。在本文中,我们评估了ML偏差如何在世界内部和自主作用的机器人中表现出来。我们审核了几种最近发表的剪贴式机器人操纵方法之一,向其介绍了对物体的表面图片,这些物体在跨种族和性别中都有不同的面孔图片,以及包含与常见刻板印象相关的术语的任务说明。我们的实验明确表明机器人对性别,种族和科学持有的较大的构成观念的作用。此外,经过审计的方法不太可能认识有色人种和有色人种。我们的跨学科社会技术分析跨越了科学技术与社会(STS),批判性研究,历史,安全,机器人技术和AI等领域和应用。我们发现,由大型数据集和溶解模型提供动力的机器人(有时称为“基础模型”,例如剪辑),其中包含人类风险在物理上放大恶性刻板印象。而且,仅纠正差异将不足以使问题的复杂性和规模不足。取而代之的是,我们建议在适当的情况下暂停,重新工作甚至损坏的机器人学习方法,以表现出刻板印象或其他有害结果,直到结果被证明是安全,有效和公正的。最后,我们讨论了有关身份安全评估框架和设计正义等主题的新的跨学科研究的全面政策变化,以及更好地理解和解决这些危害的主题。
Stereotypes, bias, and discrimination have been extensively documented in Machine Learning (ML) methods such as Computer Vision (CV) [18, 80], Natural Language Processing (NLP) [6], or both, in the case of large image and caption models such as OpenAI CLIP [14]. In this paper, we evaluate how ML bias manifests in robots that physically and autonomously act within the world. We audit one of several recently published CLIP-powered robotic manipulation methods, presenting it with objects that have pictures of human faces on the surface which vary across race and gender, alongside task descriptions that contain terms associated with common stereotypes. Our experiments definitively show robots acting out toxic stereotypes with respect to gender, race, and scientifically-discredited physiognomy, at scale. Furthermore, the audited methods are less likely to recognize Women and People of Color. Our interdisciplinary sociotechnical analysis synthesizes across fields and applications such as Science Technology and Society (STS), Critical Studies, History, Safety, Robotics, and AI. We find that robots powered by large datasets and Dissolution Models (sometimes called "foundation models", e.g. CLIP) that contain humans risk physically amplifying malignant stereotypes in general; and that merely correcting disparities will be insufficient for the complexity and scale of the problem. Instead, we recommend that robot learning methods that physically manifest stereotypes or other harmful outcomes be paused, reworked, or even wound down when appropriate, until outcomes can be proven safe, effective, and just. Finally, we discuss comprehensive policy changes and the potential of new interdisciplinary research on topics like Identity Safety Assessment Frameworks and Design Justice to better understand and address these harms.