论文标题
HPS-DET:具有超参数搜索对象检测的动态样本分配
HPS-Det: Dynamic Sample Assignment with Hyper-Parameter Search for Object Detection
论文作者
论文摘要
样本分配在现代对象检测方法中起着重要的作用。但是,大多数现有的方法都依靠手动设计来分配正 /负样本,这些样本并未明确建立样本分配和对象检测性能之间的关系。在这项工作中,我们提出了一种基于高参数搜索的新型动态样本分配方案。我们首先将分配给每个地面真理的正样本的数量定义为超参数,并采用替代优化算法来得出最佳选择。然后,我们设计一个动态的样本分配过程,以动态选择每个训练迭代的最佳阳性数量。实验表明,所得的HPS-DET在不同对象检测基线的基线上带来了改善的性能。此外,我们分析了在不同数据集之间和不同骨架之间转移的高参数可重复使用性,以进行对象检测,这表现出我们方法的优越性和多功能性。
Sample assignment plays a prominent part in modern object detection approaches. However, most existing methods rely on manual design to assign positive / negative samples, which do not explicitly establish the relationships between sample assignment and object detection performance. In this work, we propose a novel dynamic sample assignment scheme based on hyper-parameter search. We first define the number of positive samples assigned to each ground truth as the hyper-parameters and employ a surrogate optimization algorithm to derive the optimal choices. Then, we design a dynamic sample assignment procedure to dynamically select the optimal number of positives at each training iteration. Experiments demonstrate that the resulting HPS-Det brings improved performance over different object detection baselines. Moreover, We analyze the hyper-parameter reusability when transferring between different datasets and between different backbones for object detection, which exhibits the superiority and versatility of our method.