论文标题
使用深度学习的多媒体数据分类的智能3D网络协议
Intelligent 3D Network Protocol for Multimedia Data Classification using Deep Learning
论文作者
论文摘要
在视频中,人类的行为是三维(3D)信号。这些视频研究了人类行为的时空知识。使用3D卷积神经网络(CNN)研究了有希望的能力。 3D CNN尚未在静态照片中为其良好成就的二维(2D)等效物获得高输出。董事会3D卷积记忆和时空融合面部训练难以阻止3D CNN完成非凡的评估。在本文中,我们实施了混合深度学习体系结构,该体系结构结合了Stip和3D CNN功能,以有效地增强3D视频的性能。实施后,在每个时空融合循环中训练更详细,更深的图表。训练模型在处理模型的复杂评估后进一步增强了结果。视频分类模型在此实现的模型中使用。引入了使用深度学习的多媒体数据分类的智能3D网络协议,以进一步了解人类努力中的时空关联。在实施结果时,众所周知的数据集(即UCF101)评估了提出的混合技术的性能。结果击败了提出的混合技术,该混合动力技术基本上超过了最初的3D CNN。将结果与文献的最新框架进行比较,以识别UCF101的行动识别,准确度为95%。
In videos, the human's actions are of three-dimensional (3D) signals. These videos investigate the spatiotemporal knowledge of human behavior. The promising ability is investigated using 3D convolution neural networks (CNNs). The 3D CNNs have not yet achieved high output for their well-established two-dimensional (2D) equivalents in still photographs. Board 3D Convolutional Memory and Spatiotemporal fusion face training difficulty preventing 3D CNN from accomplishing remarkable evaluation. In this paper, we implement Hybrid Deep Learning Architecture that combines STIP and 3D CNN features to enhance the performance of 3D videos effectively. After implementation, the more detailed and deeper charting for training in each circle of space-time fusion. The training model further enhances the results after handling complicated evaluations of models. The video classification model is used in this implemented model. Intelligent 3D Network Protocol for Multimedia Data Classification using Deep Learning is introduced to further understand spacetime association in human endeavors. In the implementation of the result, the well-known dataset, i.e., UCF101 to, evaluates the performance of the proposed hybrid technique. The results beat the proposed hybrid technique that substantially beats the initial 3D CNNs. The results are compared with state-of-the-art frameworks from literature for action recognition on UCF101 with an accuracy of 95%.