论文标题
标量晶格QFT中的强湿耦合二元性,并应用于强耦合分解
Strong-Weak Coupling Duality in Scalar Lattice QFT with Application to Strong Coupling Decompositions
论文作者
论文摘要
事实证明,量子场理论之间的二元性是在各个物理领域的强大工具。在本文中,我们介绍了一种新的观点,用于基于众所周知的技术(田间空间傅立叶变换)获得强耦合扩展。我们讨论了这种方法在一般晶格上的一类欧几里得量子场理论的优势,重点是在任意维度的立方晶格上定义的自我相互作用$ ϕ^4 $标量场理论。我们在该理论的强耦合方向与相应的双重理论的弱耦合方案之间建立了双重性。在没有一般性的情况下,我们选择原始理论是局部的,并表明其双重动作变为非本地。使用标准的示意技术,我们在大型和中间耦合常数$ g $的制度中得出了两点相关器和每个站点的自由能的扩展。所获得的扩展在极限$ g \至0 $中保持规律,并在所考虑的区域显示快速数值收敛。维度的数值分析$ d = 2 $和$ d = 3 $在我们的分析结果与蒙特卡洛模拟之间表现出了良好的一致性。此外,我们表明,强耦合扩展与传统的弱耦合扩展一致。
Dualities between quantum field theories have proven to be a powerful tool in various areas of physics. In this paper, we introduce a new perspective for obtaining strong coupling expansions based on a well-known technique -- the Field-space Fourier transform. We discuss the advantages of this approach for a class of Euclidean quantum field theories on a general lattice, with a focus on a self-interacting $ϕ^4$ scalar field theory defined on a cubic lattice of arbitrary dimension. We establish a duality between the strong coupling regime of this theory and the weak coupling regime of a corresponding dual theory. Without loss of generality, we choose the original theory to be local and show that its dual action becomes nonlocal. Using standard diagrammatic techniques, we derive expansions for the two-point correlator and the free energy per site in the regime of large and intermediate coupling constants $g$. The obtained expansions remain regular in the limit $g \to 0$ and exhibit rapid numerical convergence in the considered regions. Numerical analysis in dimensions $d = 2$ and $d = 3$ demonstrates good agreement between our analytical results and Monte Carlo simulations. Furthermore, we show that the strong coupling expansions are consistent with traditional weak coupling expansions.