论文标题
3D标记工具
3D Labeling Tool
论文作者
论文摘要
培训和测试监督的对象检测模型需要大量带有地面真相标签的图像。标签定义图像中的对象类及其位置,形状以及可能的其他信息,例如姿势。即使存在人力,标签过程也非常耗时。我们引入了一个新颖的标签工具,用于2D图像以及3D三角网格:3D标记工具(3DLT)。这是一个独立的,功能丰富和跨平台的软件,不需要安装,并且可以在Windows,MacOS和基于Linux的发行版上运行。我们没有像当前工具那样在每个图像上分别标记每个图像上的对象,而是使用深度信息从上述图像重建三角形网格,并仅在上述网格上仅标记对象一次。我们使用注册来简化3D标记,离群值检测来改进2D边界框的计算和表面重建,以将标记可能性扩展到大点云。我们的工具经过最先进的方法测试,并且在保持准确性和易用性的同时,它极大地超过了它们。
Training and testing supervised object detection models require a large collection of images with ground truth labels. Labels define object classes in the image, as well as their locations, shape, and possibly other information such as pose. The labeling process has proven extremely time consuming, even with the presence of manpower. We introduce a novel labeling tool for 2D images as well as 3D triangular meshes: 3D Labeling Tool (3DLT). This is a standalone, feature-heavy and cross-platform software that does not require installation and can run on Windows, macOS and Linux-based distributions. Instead of labeling the same object on every image separately like current tools, we use depth information to reconstruct a triangular mesh from said images and label the object only once on the aforementioned mesh. We use registration to simplify 3D labeling, outlier detection to improve 2D bounding box calculation and surface reconstruction to expand labeling possibility to large point clouds. Our tool is tested against state of the art methods and it greatly surpasses them in terms of speed while preserving accuracy and ease of use.