论文标题

渐进的场景文字与自学

Progressive Scene Text Erasing with Self-Supervision

论文作者

Du, Xiangcheng, Zhou, Zhao, Zheng, Yingbin, Wu, Xingjiao, Ma, Tianlong, Jin, Cheng

论文摘要

场景文本擦除旨在从场景图像中删除文本内容,而当前的最新文本擦除模型经过大规模合成数据的培训。尽管数据合成引擎可以提供大量注释的训练样本,但合成数据和现实世界数据之间存在差异。在本文中,我们在未标记的现实世界场景文本图像上采用自我设计来进行特征表示。一项新颖的借口任务旨在保持图像变体的文本中风口罩之间的一致性。我们设计了渐进式擦除网络,以删除剩余文本。场景文本通过利用中间生成的结果逐渐消除,这为随后的更高质量结果奠定了基础。实验表明,我们的方法显着改善了文本擦除任务的概括,并在公共基准上实现了最先进的性能。

Scene text erasing seeks to erase text contents from scene images and current state-of-the-art text erasing models are trained on large-scale synthetic data. Although data synthetic engines can provide vast amounts of annotated training samples, there are differences between synthetic and real-world data. In this paper, we employ self-supervision for feature representation on unlabeled real-world scene text images. A novel pretext task is designed to keep consistent among text stroke masks of image variants. We design the Progressive Erasing Network in order to remove residual texts. The scene text is erased progressively by leveraging the intermediate generated results which provide the foundation for subsequent higher quality results. Experiments show that our method significantly improves the generalization of the text erasing task and achieves state-of-the-art performance on public benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源