论文标题

加速垂直联合学习

Accelerating Vertical Federated Learning

论文作者

Cai, Dongqi, Fan, Tao, Kang, Yan, Fan, Lixin, Xu, Mengwei, Wang, Shangguang, Yang, Qiang

论文摘要

隐私,安全和数据治理约束排除了跨核数据集成的蛮力过程,该数据继承了物联网的发展。提出了联合学习,以确保所有各方都可以在数据不在本地的情况下协作完成培训任务。垂直联合学习是分布式特征联合学习的专业化。为了保留隐私,将同态加密应用于启用加密操作而无需解密。然而,加上强大的安全保证,同态加密带来了额外的通信和计算开销。在本文中,我们在同态加密下全面和数值分析了垂直联合学习的当前瓶颈。我们提出了一种散乱的弹性和计算有效的加速系统,该系统最多最多将异质场景中的通信开销降低65.26%,并最多将由同态加密引起的计算开销最多减少40.66%。我们的系统可以提高当前垂直联合学习框架的鲁棒性和效率而不会损失安全性。

Privacy, security and data governance constraints rule out a brute force process in the integration of cross-silo data, which inherits the development of the Internet of Things. Federated learning is proposed to ensure that all parties can collaboratively complete the training task while the data is not out of the local. Vertical federated learning is a specialization of federated learning for distributed features. To preserve privacy, homomorphic encryption is applied to enable encrypted operations without decryption. Nevertheless, together with a robust security guarantee, homomorphic encryption brings extra communication and computation overhead. In this paper, we analyze the current bottlenecks of vertical federated learning under homomorphic encryption comprehensively and numerically. We propose a straggler-resilient and computation-efficient accelerating system that reduces the communication overhead in heterogeneous scenarios by 65.26% at most and reduces the computation overhead caused by homomorphic encryption by 40.66% at most. Our system can improve the robustness and efficiency of the current vertical federated learning framework without loss of security.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源