论文标题
神经SIM:学习与NERF生成培训数据
Neural-Sim: Learning to Generate Training Data with NeRF
论文作者
论文摘要
培训计算机视觉模型通常需要在各种场景配置和属性集中收集和标记大量图像。这个过程非常耗时,并且要确保捕获的数据分配良好地映射到应用程序方案的目标域是一项挑战。最近,综合数据已成为解决这两个问题的一种方式。但是,现有方法要么要求人类专家手动调整每个场景属性,要么使用几乎无法控制的自动方法;这需要渲染大量的随机数据变化,这很慢,对于目标域通常是次优的。我们介绍了第一个完全可分化的合成数据管道,该数据管道使用具有目标应用程序损耗函数的闭环中的神经辐射场(NERF)。我们的方法可以在没有人工的情况下生成数据,以最大程度地提高目标任务的准确性。我们说明了我们方法对合成和现实对象检测任务的有效性。我们还引入了一个新的“ YCB野外”数据集和基准标准,该数据集为对象检测提供了一种在现实世界环境中具有多种姿势的测试方案。
Training computer vision models usually requires collecting and labeling vast amounts of imagery under a diverse set of scene configurations and properties. This process is incredibly time-consuming, and it is challenging to ensure that the captured data distribution maps well to the target domain of an application scenario. Recently, synthetic data has emerged as a way to address both of these issues. However, existing approaches either require human experts to manually tune each scene property or use automatic methods that provide little to no control; this requires rendering large amounts of random data variations, which is slow and is often suboptimal for the target domain. We present the first fully differentiable synthetic data pipeline that uses Neural Radiance Fields (NeRFs) in a closed-loop with a target application's loss function. Our approach generates data on-demand, with no human labor, to maximize accuracy for a target task. We illustrate the effectiveness of our method on synthetic and real-world object detection tasks. We also introduce a new "YCB-in-the-Wild" dataset and benchmark that provides a test scenario for object detection with varied poses in real-world environments.