论文标题

深度神经网络热图捕获了大型神经影像学研究中报道的阿尔茨海默氏病模式

Deep neural network heatmaps capture Alzheimer's disease patterns reported in a large meta-analysis of neuroimaging studies

论文作者

Wang, Di, Honnorat, Nicolas, Fox, Peter T., Ritter, Kerstin, Eickhoff, Simon B., Seshadri, Sudha, Habes, Mohamad

论文摘要

目前,深层神经网络提供了最先进,最精确的机器学习模型,以区分患有阿尔茨海默氏病和健康对照的受试者的结构MRI扫描。不幸的是,由于这些多层和非线性模型的复杂性,这些模型捕获的微妙的大脑改变很难解释。已经提出了几种热图方法来解决此问题并分析从深神经网络中提取的成像模式,但是到目前为止,尚未对这些方法进行定量比较。在这项工作中,我们通过从ADNI数据集的T1 MRI扫描中得出卷积神经网络(CNN)的热图来探讨这些问题,并通过将这些热图与对应于支持向量机(SVM)系数的脑图进行比较。研究了三种突出的热图方法:层次相关性传播(LRP),综合梯度(IG)和引导Grad-CAM(GGC)。与先前在视觉上或定性评估热图的质量的研究相反,我们通过与大型荟萃分析的地面图相重叠,从而获得了精确的定量测量,该措施合并了77个基于Voxel的形态计量学(VBM)研究,独立于ADNI。我们的结果表明,所有三种热图方法都能够捕获覆盖荟萃分析图的大脑区域,并获得了比SVM系数更好的结果。其中,IG产生了与独立荟萃分析的最佳重叠的热图。

Deep neural networks currently provide the most advanced and accurate machine learning models to distinguish between structural MRI scans of subjects with Alzheimer's disease and healthy controls. Unfortunately, the subtle brain alterations captured by these models are difficult to interpret because of the complexity of these multi-layer and non-linear models. Several heatmap methods have been proposed to address this issue and analyze the imaging patterns extracted from the deep neural networks, but no quantitative comparison between these methods has been carried out so far. In this work, we explore these questions by deriving heatmaps from Convolutional Neural Networks (CNN) trained using T1 MRI scans of the ADNI data set, and by comparing these heatmaps with brain maps corresponding to Support Vector Machines (SVM) coefficients. Three prominent heatmap methods are studied: Layer-wise Relevance Propagation (LRP), Integrated Gradients (IG), and Guided Grad-CAM (GGC). Contrary to prior studies where the quality of heatmaps was visually or qualitatively assessed, we obtained precise quantitative measures by computing overlap with a ground-truth map from a large meta-analysis that combined 77 voxel-based morphometry (VBM) studies independently from ADNI. Our results indicate that all three heatmap methods were able to capture brain regions covering the meta-analysis map and achieved better results than SVM coefficients. Among them, IG produced the heatmaps with the best overlap with the independent meta-analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源