论文标题

通过自适应,基于交易的多代理系统的分散调度

Decentralized scheduling through an adaptive, trading-based multi-agent system

论文作者

Kölle, Michael, Rietdorf, Lennart, Schmid, Kyrill

论文摘要

在多机构增强学习系统中,一个代理的行为可能会对其他代理的回报产生负面影响。解决这个问题的一种方法是让代理商彼此交易他们的回报。在此激励的情况下,这项工作将交易方法应用于模拟的调度环境,在该环境中,代理商负责分配传入的工作来计算核心。在这种环境下,增强学习者学会成功交易。代理商可以将计算核心的使用权交易,以比低优先级,低回报的工作更快地处理高优先级,高回报的工作。但是,由于组合效应,在该环境中,简单加固学习代理的动作和观察空间呈指数级,并具有问题大小的关键参数。但是,如果代理分为几个独立的子单元,则指数缩放行为可以转换为线性。我们使用代理内部参数共享进一步改进了这种分布式体系结构。此外,它可以扩展以自动设置交易价格。我们表明,在我们的调度环境中,分布式代理体系结构的优势显然超过了更多的汇总方法。我们证明,使用代理内部参数共享,分布式代理体系结构变得更加性能。最后,我们研究了两个不同的奖励功能如何影响自主定价和相应的计划。

In multi-agent reinforcement learning systems, the actions of one agent can have a negative impact on the rewards of other agents. One way to combat this problem is to let agents trade their rewards amongst each other. Motivated by this, this work applies a trading approach to a simulated scheduling environment, where the agents are responsible for the assignment of incoming jobs to compute cores. In this environment, reinforcement learning agents learn to trade successfully. The agents can trade the usage right of computational cores to process high-priority, high-reward jobs faster than low-priority, low-reward jobs. However, due to combinatorial effects, the action and observation spaces of a simple reinforcement learning agent in this environment scale exponentially with key parameters of the problem size. However, the exponential scaling behavior can be transformed into a linear one if the agent is split into several independent sub-units. We further improve this distributed architecture using agent-internal parameter sharing. Moreover, it can be extended to set the exchange prices autonomously. We show that in our scheduling environment, the advantages of a distributed agent architecture clearly outweigh more aggregated approaches. We demonstrate that the distributed agent architecture becomes even more performant using agent-internal parameter sharing. Finally, we investigate how two different reward functions affect autonomous pricing and the corresponding scheduling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源