论文标题
$ ads_4 \ times s^7 $在1循环及以后
M-theory on $AdS_4\times S^7$ at 1-loop and beyond
论文作者
论文摘要
我们在$ ads_4 \ times s^7 $上研究Graviton散射,这对于压力张量张量的多重运动四点函数是双重的,在最大的超级对称3D $ U(n)_1 _1 \ times u(times u(times u(times u(n)_ {-1)_ { - 1} $ abjm理论。我们将1循环的校正计算到来自具有超级重力$ r $和较高衍生品$ r^4 $ Vertices的Witten图的该全息相关器,直至接触术语歧义,并发现平面空间限制与11d M-theor S-theor S-Matrix中的相应项匹配。然后,我们使用超对称性定位来表明所有1循环触点术语消失了,如前所述,$ ads_4 \ times s^7/\ mathbb {z} _2 $理论dual dual to $ u(n)_2 \ times u(times u(times u(time times u(time times u(n))_2 \ times U(n)_ {-2} $ abjm。最后,我们使用了受扭曲M理论的启发的Gaiotto和Abajian的最新定位结果来计算应力张量多重组的相关器中的所有短OPE系数,以及下一个最低的半bps操作员,我们发现所有$ n $ n $ n $ n $ n $ n $ n $ n $。
We study graviton scattering on $AdS_4\times S^7$, which is dual to the stress tensor multiplet four-point function in the maximally supersymmetric 3d $U(N)_1\times U(N)_{-1}$ ABJM theory. We compute 1-loop corrections to this holographic correlator coming from Witten diagrams with supergravity $R$ and higher derivative $R^4$ vertices, up to contact term ambiguities, and find that the flat space limit matches the corresponding terms in the 11d M-theory S-matrix. We then use supersymmetric localization to show that all the 1-loop contact terms vanish, as was previously observed for the $AdS_4\times S^7/\mathbb{Z}_2$ theory dual to $U(N)_2\times U(N)_{-2}$ ABJM. Finally, we use the recent localization results of Gaiotto and Abajian, as inspired by twisted M-theory, to compute all the short OPE coefficients in correlators of the stress tensor multiplet and the next lowest half-BPS operator, which we find saturate the bootstrap bounds on these mixed correlators for all $N$.