论文标题
零射击视频字幕与不断发展的伪tokens
Zero-Shot Video Captioning with Evolving Pseudo-Tokens
论文作者
论文摘要
我们介绍了一种零拍的视频字幕方法,该方法采用了两个冷冻网络:GPT-2语言模型和剪辑图像文本匹配模型。匹配分数用于引导语言模型生成一个句子,该句子的平均匹配分数高于视频帧的一个子集。与零拍图像字幕方法不同,我们的工作立即考虑整个句子。这是通过在生成过程中优化从头提示的一部分,通过在提示中修改所有其他令牌的表示,并通过迭代重复该过程,逐渐提高生成句子的特殊性和全面性来实现。我们的实验表明,生成的字幕是连贯的,并显示了广泛的现实知识。我们的代码可在以下网址找到:https://github.com/yoadtew/zero-shot-video-to-text
We introduce a zero-shot video captioning method that employs two frozen networks: the GPT-2 language model and the CLIP image-text matching model. The matching score is used to steer the language model toward generating a sentence that has a high average matching score to a subset of the video frames. Unlike zero-shot image captioning methods, our work considers the entire sentence at once. This is achieved by optimizing, during the generation process, part of the prompt from scratch, by modifying the representation of all other tokens in the prompt, and by repeating the process iteratively, gradually improving the specificity and comprehensiveness of the generated sentence. Our experiments show that the generated captions are coherent and display a broad range of real-world knowledge. Our code is available at: https://github.com/YoadTew/zero-shot-video-to-text