论文标题

离散高斯半串联链的详细动力学沿轮廓任意刚度

Detailed dynamics of discrete Gaussian semiflexible chains with arbitrary stiffness along the contour

论文作者

Tejedor, Andres R., Tejedor, Jaime R., Ramirez, Jorge

论文摘要

我们重新审视了Winkler \ textit {et al}提出的半串联高斯链的模型,解决了模型的离散描述的动态,并为某些最相关的动力学可观察到的动态表达式得出了精确的代数表达式,例如最相关的动力学可观察物,例如单个单体的均值均匀位移的均匀压力,而动态结构因子不断变化,端到端的范围范围。通过将它们与布朗动力学模拟的结果进行比较来验证数学表达式,并报告了一个很好的一致性。然后,我们将模型推广到具有任意刚度的线性聚合物链。特别是,我们专注于线性聚合物具有刚度的线性聚合物的情况,该聚合物从链的一端变为另一端,并研究先前介绍的相同动力学函数。我们讨论了不同的方法,以检查聚合物沿轮廓沿其轮廓具有恒定还是异质性刚度。总体而言,这项工作为半串联链的众所周知的模型提供了一个新的见解,并提供了可以利用的工具,以将模型的预测与粗粒度的半融合聚合物进行比较。

We revisit a model of semiflexible Gaussian chains proposed by Winkler \textit{et al}, solve the dynamics of the discrete description of the model and derive exact algebraic expressions for some of the most relevant dynamical observables, such as the mean-square displacement of individual monomers, the dynamic structure factor, the end-to-end vector relaxation and the shear stress relaxation modulus. The mathematical expressions are verified by comparing them with results from Brownian dynamics simulations, reporting an excellent agreement. Then, we generalize the model to linear polymer chains with arbitrary stiffness. In particular, we focus on the case of a linear polymer with stiffness that changes linearly from one end of the chain to the other, and study the same dynamical functions previously presented. We discuss different approaches to check whether a polymer has constant or heterogeneous stiffness along its contour. Overall, this work presents a new insight for a well known model for semiflexible chains and provides tools that can be exploited to compare the predictions of the model with simulations of coarse grained semiflexible polymers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源