论文标题
ADAPTCL:在顺序数据集中应对异质性的自适应持续学习
AdaptCL: Adaptive Continual Learning for Tackling Heterogeneity in Sequential Datasets
论文作者
论文摘要
管理不断学习的复杂性,大小和相似性各不相同的异质数据集提出了重大挑战。任务不合时宜的持续学习对于应对这一挑战是必要的,因为在区分任务边界时具有不同相似性的数据集构成了困难。常规的任务不合时宜的持续学习实践通常依赖于排练或正则化技术。但是,彩排方法可能会在不同的数据集大小上遇到困难,并由于刚性缓冲尺寸而调节旧数据和新数据的重要性。同时,正则化方法采用通用约束来促进概括,但是在处理缺乏共同特征的不同数据集时,可能会阻碍性能,因此需要采用更适应性的方法。在本文中,我们提出了ADAPTCL,这是一种新型的自适应持续学习方法,以解决顺序数据集中的异质性。 ADAPTCL采用细粒度的数据驱动修剪来适应数据复杂性和数据集大小的变化。它还利用任务不合时宜的参数隔离来减轻由于数据相似性差异而导致的不同程度灾难性遗忘的影响。通过两种普通的案例研究方法,我们在MNIST变体和域数据集以及来自不同域的数据集上评估ADAPTCL。后者包括大规模的,多样化的二进制级数据集和少数射击的多级数据集。在所有这些情况下,ADAPTCL始终表现出强大的性能,展示了其在处理异质数据集中的灵活性和一般适用性。
Managing heterogeneous datasets that vary in complexity, size, and similarity in continual learning presents a significant challenge. Task-agnostic continual learning is necessary to address this challenge, as datasets with varying similarity pose difficulties in distinguishing task boundaries. Conventional task-agnostic continual learning practices typically rely on rehearsal or regularization techniques. However, rehearsal methods may struggle with varying dataset sizes and regulating the importance of old and new data due to rigid buffer sizes. Meanwhile, regularization methods apply generic constraints to promote generalization but can hinder performance when dealing with dissimilar datasets lacking shared features, necessitating a more adaptive approach. In this paper, we propose AdaptCL, a novel adaptive continual learning method to tackle heterogeneity in sequential datasets. AdaptCL employs fine-grained data-driven pruning to adapt to variations in data complexity and dataset size. It also utilizes task-agnostic parameter isolation to mitigate the impact of varying degrees of catastrophic forgetting caused by differences in data similarity. Through a two-pronged case study approach, we evaluate AdaptCL on both datasets of MNIST Variants and DomainNet, as well as datasets from different domains. The latter include both large-scale, diverse binary-class datasets and few-shot, multi-class datasets. Across all these scenarios, AdaptCL consistently exhibits robust performance, demonstrating its flexibility and general applicability in handling heterogeneous datasets.