论文标题

从黑洞到一维链:均等对称性打破和扭结形成

From black hole to one-dimensional chain: parity symmetry breaking and kink formation

论文作者

Li, Zhi-Hong, Shi, Han-Qing, Zhang, Hai-Qing

论文摘要

ADS/CFT对应关系是研究强大耦合多体系统的“第一原则”工具。尽管已广泛应用它来研究连续的对称破坏动力学,但很少研究离散的对称性破坏动力学。在本文中,通过广告/CFT对应关系实现了强耦合一维链中的扭结形成模型。在此过程中,我们首先构建了一个具有奇偶校验对称性的真实标量字段模型。通过以有限的速率淬灭临界点的系统,由于自发的平等对称性破坏,串起的头发散发出来,这实现了黑洞的“无头发猜想”的反示例。由于广告/CFT对应关系,散装中的扭结头发对广告边界中的扭结是双重的。发现双重扭结数的平均值与著名的kibble-zurek机制一致,使与淬火率的普遍力量关系满足。此外,扭结数的较高累积物与平均数量成正比,这与扭结形成满足二项式分布的假设相一致,而二项式分布超出了kibble-zurek机制。

AdS/CFT correspondence is a "first-principle" tool to study the strongly coupled many-body systems. While it has been extensively applied to investigate the continuous symmetry breaking dynamics, the discrete symmetry breaking dynamics are rarely investigated. In this paper, the model of kink formation in a strongly coupled one-dimensional chain is realized from the AdS/CFT correspondence. In doing so, we first construct a model of real scalar fields with parity symmetries in the AdS bulk. By quenching the system across the critical point at a finite rate, kink hairs turn out in the bulk due to the spontaneous parity symmetry breaking, which accomplishes a counter-example of "no hair conjecture" of black hole. Due to the AdS/CFT correspondence, kink hairs in the bulk are dual to the kinks in the AdS boundary. The mean of the dual kink numbers are found to satisfy a universal power-law relation to the quench rate, in agreement with the celebrated Kibble-Zurek mechanism. Moreover, the higher cumulants of the kink numbers are proportional to the mean numbers, consistent with the assumption that the formation of kinks satisfy the binomial distributions which goes beyond the Kibble-Zurek mechanism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源