论文标题
Sim-STEM实验室:合并快速茎模拟的压缩感测理论
SIM-STEM Lab: Incorporating Compressed Sensing Theory for Fast STEM Simulation
论文作者
论文摘要
最近,已经显示,可以通过仅通过插入型算法来实验中仅获取一小部分像素,然后在图像中仅获取一小部分像素,然后使用完整的图像重建完整的图像,可以实现精确的剂量控制和原子分辨率扫描透射电子显微镜(STEM)图像的总体采集速度的提高。在本文中,我们将相同的涂漆方法(一种压缩传感形式)应用于模拟,亚采样的原子分辨率茎图像。我们发现,有可能显着子样本模拟区域,贡献图像的G矢量数量以及对最终图像有助于的冷冻声子配置的数量,同时仍可以使可接受的拟合度适合完全采样的模拟。在这里,我们讨论我们使用的参数以及与完整模拟相比,如何量化所得模拟。与任何压缩传感方法一样,必须注意确保不排除孤立事件,但观察到的仿真速度的提高为实时模拟,图像分类和分析提供了很大的机会,以作为对未来显微镜进行实验的补充。
Recently it has been shown that precise dose control and an increase in the overall acquisition speed of atomic resolution scanning transmission electron microscope (STEM) images can be achieved by acquiring only a small fraction of the pixels in the image experimentally and then reconstructing the full image using an inpainting algorithm. In this paper, we apply the same inpainting approach (a form of compressed sensing) to simulated, sub-sampled atomic resolution STEM images. We find that it is possible to significantly sub-sample the area that is simulated, the number of g-vectors contributing the image, and the number of frozen phonon configurations contributing to the final image while still producing an acceptable fit to a fully sampled simulation. Here we discuss the parameters that we use and how the resulting simulations can be quantifiably compared to the full simulations. As with any Compressed Sensing methodology, care must be taken to ensure that isolated events are not excluded from the process, but the observed increase in simulation speed provides significant opportunities for real time simulations, image classification and analytics to be performed as a supplement to experiments on a microscope to be developed in the future.