论文标题
合并树木(以及持久图)的主要测量分析
Principal Geodesic Analysis of Merge Trees (and Persistence Diagrams)
论文作者
论文摘要
本文介绍了合并树木主要测量分析(MT-PGA)的计算框架,这是对著名的主要组件分析(PCA)框架[87]对合并树的度量标准空间[92]的新颖调整。我们将MT-PGA计算作为一个约束优化问题,旨在调整正交测量轴的基础,同时最小化拟合能量。我们引入了一种有效的,迭代的算法,该算法利用共享记忆并行性以及拟合能量梯度的分析表达,以确保快速迭代。我们的方法还琐碎地扩展到极值持久图。对公共集合的广泛实验证明了我们方法的效率 - 最大示例中的MT -PGA计算在几分钟内进行了计算。我们通过扩展了两个典型的PCA应用程序来展示我们的贡献的实用性。首先,我们将MT-PGA应用于数据降低,并通过以MT-PGA为基础的第一批坐标来可靠地压缩合并树。其次,我们提出一个利用MT-PGA基础的前两个方向来生成集合的二维布局的尺寸降低框架。我们以持久性相关视图来增强这些布局,从而实现整体和本地视觉检查集合中的特征可变性。在这两种应用中,定量实验评估了我们框架的相关性。最后,我们提供了可用于复制结果的C ++实现。
This paper presents a computational framework for the Principal Geodesic Analysis of merge trees (MT-PGA), a novel adaptation of the celebrated Principal Component Analysis (PCA) framework [87] to the Wasserstein metric space of merge trees [92]. We formulate MT-PGA computation as a constrained optimization problem, aiming at adjusting a basis of orthogonal geodesic axes, while minimizing a fitting energy. We introduce an efficient, iterative algorithm which exploits shared-memory parallelism, as well as an analytic expression of the fitting energy gradient, to ensure fast iterations. Our approach also trivially extends to extremum persistence diagrams. Extensive experiments on public ensembles demonstrate the efficiency of our approach - with MT-PGA computations in the orders of minutes for the largest examples. We show the utility of our contributions by extending to merge trees two typical PCA applications. First, we apply MT-PGA to data reduction and reliably compress merge trees by concisely representing them by their first coordinates in the MT-PGA basis. Second, we present a dimensionality reduction framework exploiting the first two directions of the MT-PGA basis to generate two-dimensional layouts of the ensemble. We augment these layouts with persistence correlation views, enabling global and local visual inspections of the feature variability in the ensemble. In both applications, quantitative experiments assess the relevance of our framework. Finally, we provide a C++ implementation that can be used to reproduce our results.