论文标题
密集的RGB-D惯性大满贯,地图变形
Dense RGB-D-Inertial SLAM with Map Deformations
论文作者
论文摘要
尽管密集的视觉大满贯方法能够估计环境的密集重建,但它们在跟踪步骤中缺乏稳健性,尤其是当优化初始化较差时。稀疏的视觉大满贯系统通过将惯性测量包括在紧密耦合的融合中,达到了高度的准确性和鲁棒性。受这一表演的启发,我们提出了第一个紧密耦合的密集RGB-D惯性大满贯系统。 我们的系统在GPU上运行时具有实时功能。它共同优化相机姿势,速度,IMU偏见和重力方向,同时建立了全球一致,完全密集的基于表面的3D重建环境。通过一系列关于合成和现实世界数据集的实验,我们表明我们密集的视觉惯用大满贯系统对于低纹理和低几何变化的快速运动和时期比相关的RGB-D仅相关的SLAM系统更强大。
While dense visual SLAM methods are capable of estimating dense reconstructions of the environment, they suffer from a lack of robustness in their tracking step, especially when the optimisation is poorly initialised. Sparse visual SLAM systems have attained high levels of accuracy and robustness through the inclusion of inertial measurements in a tightly-coupled fusion. Inspired by this performance, we propose the first tightly-coupled dense RGB-D-inertial SLAM system. Our system has real-time capability while running on a GPU. It jointly optimises for the camera pose, velocity, IMU biases and gravity direction while building up a globally consistent, fully dense surfel-based 3D reconstruction of the environment. Through a series of experiments on both synthetic and real world datasets, we show that our dense visual-inertial SLAM system is more robust to fast motions and periods of low texture and low geometric variation than a related RGB-D-only SLAM system.