论文标题

对比自我监督的学习会导致更高的对抗性敏感性

Contrastive Self-Supervised Learning Leads to Higher Adversarial Susceptibility

论文作者

Gupta, Rohit, Akhtar, Naveed, Mian, Ajmal, Shah, Mubarak

论文摘要

对比性自我监督学习(CSL)已成功地匹配或超过了图像和视频分类中监督学习的表现。但是,在两个学习范式引起的表示形式的性质是否相似。我们在对抗性鲁棒性的角度下对此进行了研究。我们对问题的分析表明,CSL对对监督学习的扰动具有本质上更高的敏感性。我们将数据表示的统一分布在CSL表示空间中的单位孔中的统一分布是造成这种现象的关键因素。我们确定这是训练过程中存在假阴对的结果,这增加了模型对输入扰动的敏感性。我们的发现得到了对对抗性扰动和其他输入损坏的图像和视频分类的广泛实验的支持。我们制定了一种策略来检测和删除简单而有效地通过CSL培训改善模型鲁棒性的假阴性对。我们将CSL与其受监督的对应物之间的稳健差距的68%封闭。最后,我们通过将我们的方法纳入CSL来为对抗性学习做出贡献。我们证明,在该域中的两种不同的最新方法中,平均增益约为5%。

Contrastive self-supervised learning (CSL) has managed to match or surpass the performance of supervised learning in image and video classification. However, it is still largely unknown if the nature of the representations induced by the two learning paradigms is similar. We investigate this under the lens of adversarial robustness. Our analysis of the problem reveals that CSL has intrinsically higher sensitivity to perturbations over supervised learning. We identify the uniform distribution of data representation over a unit hypersphere in the CSL representation space as the key contributor to this phenomenon. We establish that this is a result of the presence of false negative pairs in the training process, which increases model sensitivity to input perturbations. Our finding is supported by extensive experiments for image and video classification using adversarial perturbations and other input corruptions. We devise a strategy to detect and remove false negative pairs that is simple, yet effective in improving model robustness with CSL training. We close up to 68% of the robustness gap between CSL and its supervised counterpart. Finally, we contribute to adversarial learning by incorporating our method in CSL. We demonstrate an average gain of about 5% over two different state-of-the-art methods in this domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源