论文标题
地球形式:一个测量引导的少数射击3D点云实例分段器
Geodesic-Former: a Geodesic-Guided Few-shot 3D Point Cloud Instance Segmenter
论文作者
论文摘要
本文在3D Point Cloud中介绍了一个新问题:很少的实例分割。给定一些带注释的点云举例说明了目标类,我们的目标是在查询点云中细分该目标类的所有实例。这个问题具有广泛的实用应用,在这些问题上,分段注释的收集非常昂贵。为了解决此问题,我们提出了测量形式 - 第一个用于3D点云实例分割的地球引导变压器。关键的想法是利用大地距离来应对LIDAR 3D点云的密度不平衡。 LIDAR 3D点云在物体表面附近茂密,在其他地方稀疏或空,使欧几里得距离较差以区分不同的物体。另一方面,大地测量距离更合适,因为它编码场景的几何形状可以用作变压器解码器中注意机制的指导信号,以生成代表实例的不同特征的内核。然后将这些内核用于动态卷积以获得最终实例掩模。为了评估新任务上的测量形式,我们提出了两个常见的3D点云实例分割数据集的新拆分:ScannETV2和S3DIS。地球形式始终优于根据最新的3D点云实例分割方法的强大基准,并具有明显的余量。代码可从https://github.com/vinairesearch/geoformer获得。
This paper introduces a new problem in 3D point cloud: few-shot instance segmentation. Given a few annotated point clouds exemplified a target class, our goal is to segment all instances of this target class in a query point cloud. This problem has a wide range of practical applications where point-wise instance segmentation annotation is prohibitively expensive to collect. To address this problem, we present Geodesic-Former -- the first geodesic-guided transformer for 3D point cloud instance segmentation. The key idea is to leverage the geodesic distance to tackle the density imbalance of LiDAR 3D point clouds. The LiDAR 3D point clouds are dense near the object surface and sparse or empty elsewhere making the Euclidean distance less effective to distinguish different objects. The geodesic distance, on the other hand, is more suitable since it encodes the scene's geometry which can be used as a guiding signal for the attention mechanism in a transformer decoder to generate kernels representing distinct features of instances. These kernels are then used in a dynamic convolution to obtain the final instance masks. To evaluate Geodesic-Former on the new task, we propose new splits of the two common 3D point cloud instance segmentation datasets: ScannetV2 and S3DIS. Geodesic-Former consistently outperforms strong baselines adapted from state-of-the-art 3D point cloud instance segmentation approaches with a significant margin. Code is available at https://github.com/VinAIResearch/GeoFormer.