论文标题

具有学识渊博的系统(3)汉密尔顿动态的系统的强大且安全的自主导航

Robust and Safe Autonomous Navigation for Systems with Learned SE(3) Hamiltonian Dynamics

论文作者

Li, Zhichao, Duong, Thai, Atanasov, Nikolay

论文摘要

稳定性和安全性是成功部署自动控制系统的关键特性。作为一个激励的例子,请考虑在复杂的环境中自动移动机器人导航。对不同操作条件进行概括的控制设计需要系统动力学模型,鲁棒性建模错误以及对安全\ newzl {约束}的满意度,例如避免碰撞。本文开发了一个神经普通微分方程网络,从轨迹数据中学习了哈密顿系统的动态。博学的哈密顿模型用于合成基于能量的电源控制器,并分析其\ emph {鲁棒性},以在学习模型及其\ emph {Safety}中对环境施加的约束。考虑到系统的所需参考路径,我们使用虚拟参考调查员扩展了设计,以实现跟踪控制。州长国家是一个调节点,沿参考路径移动,平衡系统能级,模型不确定性范围以及违反安全性的距离,以确保鲁棒性和安全性。我们的哈密顿动力学学习和跟踪控制技术在\修订后的{模拟的己谐和四极管机器人}在混乱的3D环境中导航。

Stability and safety are critical properties for successful deployment of automatic control systems. As a motivating example, consider autonomous mobile robot navigation in a complex environment. A control design that generalizes to different operational conditions requires a model of the system dynamics, robustness to modeling errors, and satisfaction of safety \NEWZL{constraints}, such as collision avoidance. This paper develops a neural ordinary differential equation network to learn the dynamics of a Hamiltonian system from trajectory data. The learned Hamiltonian model is used to synthesize an energy-shaping passivity-based controller and analyze its \emph{robustness} to uncertainty in the learned model and its \emph{safety} with respect to constraints imposed by the environment. Given a desired reference path for the system, we extend our design using a virtual reference governor to achieve tracking control. The governor state serves as a regulation point that moves along the reference path adaptively, balancing the system energy level, model uncertainty bounds, and distance to safety violation to guarantee robustness and safety. Our Hamiltonian dynamics learning and tracking control techniques are demonstrated on \Revised{simulated hexarotor and quadrotor robots} navigating in cluttered 3D environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源