论文标题

自动扩张的时空同步图建模用于流量预测

Automated Dilated Spatio-Temporal Synchronous Graph Modeling for Traffic Prediction

论文作者

Jin, Guangyin, Li, Fuxian, Zhang, Jinlei, Wang, Mudan, Huang, Jincai

论文摘要

由于运输网络中复杂的时空依赖性,准确的交通预测是智能运输系统中一项艰巨的任务。许多现有的作品都利用复杂的时间建模方法与图形卷积网络(GCN)合并,以捕获短期和长期时空依赖性。但是,这些具有复杂设计的分离模块可以限制时空表示学习的有效性和效率。此外,大多数以前的作品都采用固定的图形构造方法来表征全局时空关系,这限制了模型在不同时间段甚至不同的数据方案中的学习能力。为了克服这些局限性,我们提出了一个自动扩张的时空同步图网络,称为Auto-DSTSGN用于流量预测。具体而言,我们设计了自动扩张的时空同步图(自动-DSTSG)模块,以捕获短期和长期时空相关性,通过将更深的层与扩张因子堆叠在一起,以增加的顺序。此外,我们提出了一种图形结构搜索方法,以自动构建可以适应不同数据场景的时空同步图。在四个现实世界数据集上进行的大量实验表明,与最先进的方法相比,我们的模型可以提高约10%。源代码可在https://github.com/jinguangyin/auto-dstsgn上找到。

Accurate traffic prediction is a challenging task in intelligent transportation systems because of the complex spatio-temporal dependencies in transportation networks. Many existing works utilize sophisticated temporal modeling approaches to incorporate with graph convolution networks (GCNs) for capturing short-term and long-term spatio-temporal dependencies. However, these separated modules with complicated designs could restrict effectiveness and efficiency of spatio-temporal representation learning. Furthermore, most previous works adopt the fixed graph construction methods to characterize the global spatio-temporal relations, which limits the learning capability of the model for different time periods and even different data scenarios. To overcome these limitations, we propose an automated dilated spatio-temporal synchronous graph network, named Auto-DSTSGN for traffic prediction. Specifically, we design an automated dilated spatio-temporal synchronous graph (Auto-DSTSG) module to capture the short-term and long-term spatio-temporal correlations by stacking deeper layers with dilation factors in an increasing order. Further, we propose a graph structure search approach to automatically construct the spatio-temporal synchronous graph that can adapt to different data scenarios. Extensive experiments on four real-world datasets demonstrate that our model can achieve about 10% improvements compared with the state-of-art methods. Source codes are available at https://github.com/jinguangyin/Auto-DSTSGN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源