论文标题

只需旋转:通过旋转转换部署后门攻击

Just Rotate it: Deploying Backdoor Attacks via Rotation Transformation

论文作者

Wu, Tong, Wang, Tianhao, Sehwag, Vikash, Mahloujifar, Saeed, Mittal, Prateek

论文摘要

最近的作品表明,深度学习模型容易受到后门中毒攻击的影响,在这些攻击中,这些攻击灌输了与外部触发模式或物体(例如贴纸,太阳镜等)的虚假相关性。我们发现这种外部触发信号是不必要的,因为可以使用基于旋转的图像转换轻松插入高效的后门。我们的方法通过旋转有限数量的对象并将其标记错误来构建中毒数据集;一旦接受过培训,受害者的模型将在运行时间推理期间做出不良的预测。它表现出很高的攻击成功率,同时通过有关图像分类和对象检测任务的全面经验研究来保持清洁绩效。此外,我们评估了标准数据增强技术和针对我们的攻击的四种不同的后门防御措施,发现它们都无法作为一致的缓解方法。正如我们在图像分类和对象检测应用程序中所示,我们的攻击只能在现实世界中很容易部署。总体而言,我们的工作突出了一个新的,简单的,物理上可实现的和高效的后门攻击矢量。我们的视频演示可在https://youtu.be/6jif8wnx34m上找到。

Recent works have demonstrated that deep learning models are vulnerable to backdoor poisoning attacks, where these attacks instill spurious correlations to external trigger patterns or objects (e.g., stickers, sunglasses, etc.). We find that such external trigger signals are unnecessary, as highly effective backdoors can be easily inserted using rotation-based image transformation. Our method constructs the poisoned dataset by rotating a limited amount of objects and labeling them incorrectly; once trained with it, the victim's model will make undesirable predictions during run-time inference. It exhibits a significantly high attack success rate while maintaining clean performance through comprehensive empirical studies on image classification and object detection tasks. Furthermore, we evaluate standard data augmentation techniques and four different backdoor defenses against our attack and find that none of them can serve as a consistent mitigation approach. Our attack can be easily deployed in the real world since it only requires rotating the object, as we show in both image classification and object detection applications. Overall, our work highlights a new, simple, physically realizable, and highly effective vector for backdoor attacks. Our video demo is available at https://youtu.be/6JIF8wnX34M.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源