论文标题

使用神经网络分类器进行成像遗传学的神经影像学特征提取

Neuroimaging Feature Extraction using a Neural Network Classifier for Imaging Genetics

论文作者

Beaulac, Cédric, Wu, Sidi, Gibson, Erin, Miranda, Michelle F., Cao, Jiguo, Rocha, Leno, Beg, Mirza Faisal, Nathoo, Farouk S.

论文摘要

基因与神经成像表型关联的一个主要问题是遗传数据和神经成像数据的高维度。在本文中,我们解决了后一种问题,以开发与疾病预测相关的解决方案。在关于神经网络的预测能力的大量文献的支持下,我们提出的解决方案使用神经网络来从神经成像数据特征中提取与预测阿尔茨海默氏病(AD)有关的数据特征,以期与遗传学有关。我们的神经影像学遗传管道包括图像处理,神经影像学特征提取和遗传关联步骤。我们提出了一个神经网络分类器,用于提取与疾病和遗传关联的多元贝叶斯稀疏回归模型相关的神经影像学特征。我们将这些功能的预测能力与专家选定的功能进行了比较,并仔细研究了新的神经影像学特征所识别的SNP。

A major issue in the association of genes to neuroimaging phenotypes is the high dimension of both genetic data and neuroimaging data. In this article, we tackle the latter problem with an eye toward developing solutions that are relevant for disease prediction. Supported by a vast literature on the predictive power of neural networks, our proposed solution uses neural networks to extract from neuroimaging data features that are relevant for predicting Alzheimer's Disease (AD) for subsequent relation to genetics. Our neuroimaging-genetic pipeline is comprised of image processing, neuroimaging feature extraction and genetic association steps. We propose a neural network classifier for extracting neuroimaging features that are related with disease and a multivariate Bayesian group sparse regression model for genetic association. We compare the predictive power of these features to expert selected features and take a closer look at the SNPs identified with the new neuroimaging features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源