论文标题
原子:在线行为广告生态系统中推断跟踪器 - 广告数据共享的可推广技术
ATOM: A Generalizable Technique for Inferring Tracker-Advertiser Data Sharing in the Online Behavioral Advertising Ecosystem
论文作者
论文摘要
在线跟踪器和广告客户之间的数据共享是在线行为广告中的关键组成部分。可以通过各种过程来促进此共享,包括用户浏览器无法观察到的过程。这些过程的不可观念限制了寻求验证需要完全披露数据共享合作伙伴的法规的研究人员和审计师的能力。不幸的是,由于它们依赖于在线行为行为广告生态系统的协议或特定于案例的工件,因此现有技术对不可观察的数据共享关系的推断有限(例如,它们仅在客户端标题竞标中用于广告交付或广告客户执行广告重新出现时,它们才能起作用。随着行为广告技术继续迅速发展,这些人工制品的可用性以及取决于它们的透明度解决方案的有效性仍然是短暂的。在本文中,我们提出了一种称为Atom的可推广技术,以推断在线跟踪器和广告商之间的数据共享关系。原子与先前的工作不同,因为它普遍适用 - 即独立于广告交付协议或伪像的可用性。原子利用了这样的见解,即通过行为广告的本质,广告创意本身可以用来推断跟踪器和广告商之间的数据共享 - 毕竟,广告中展示的主题和品牌取决于广告商可用的数据。因此,通过有选择地阻止跟踪器并监视广告商交付的广告特征的变化,Atom能够识别跟踪器和广告商之间的数据共享关系。通过我们实施原子发现的关系包括使用先前方法发现的关系,并由外部来源验证。
Data sharing between online trackers and advertisers is a key component in online behavioral advertising. This sharing can be facilitated through a variety of processes, including those not observable to the user's browser. The unobservability of these processes limits the ability of researchers and auditors seeking to verify compliance with regulations which require complete disclosure of data sharing partners. Unfortunately, the applicability of existing techniques to make inferences about unobservable data sharing relationships is limited due to their dependence on protocol- or case-specific artifacts of the online behavioral advertising ecosystem (e.g., they work only when client-side header bidding is used for ad delivery or when advertisers perform ad retargeting). As behavioral advertising technologies continue to evolve rapidly, the availability of these artifacts and the effectiveness of transparency solutions dependent on them remain ephemeral. In this paper, we propose a generalizable technique, called ATOM, to infer data sharing relationships between online trackers and advertisers. ATOM is different from prior work in that it is universally applicable -- i.e., independent of ad delivery protocols or availability of artifacts. ATOM leverages the insight that by the very nature of behavioral advertising, ad creatives themselves can be used to infer data sharing between trackers and advertisers -- after all, the topics and brands showcased in an ad are dependent on the data available to the advertiser. Therefore, by selectively blocking trackers and monitoring changes in the characteristics of ads delivered by advertisers, ATOM is able to identify data sharing relationships between trackers and advertisers. The relationships discovered by our implementation of ATOM include those not found using prior approaches and are validated by external sources.