论文标题
从深度虚拟独家散射中全球提取信息的基准测试
Benchmarks for a Global Extraction of Information from Deeply Virtual Exclusive Scattering
论文作者
论文摘要
我们开发了一个框架,以建立机器学习和深层神经网络的基准分析(FEMTONET)。在此框架内,我们提出了康普顿形式的提取,以从非极化质子目标中深层虚拟康普顿散射。这项工作至关重要的是对内置在机器学习(ML)算法的影响的研究。我们使用Bethe-Heitler过程,该过程是深度虚拟康普顿散射的QED辐射背景,尤其是它们从数据中提取的信息概括的能力。然后,我们在完整的横截面上使用这些技术,并将结果与分析模型计算进行比较。我们提出了一种量化技术,即随机目标方法,以开始理解息肉和认知不确定性的分离,因为它们在独家散射分析中表现出来。我们建议一组物理驱动和基于机器学习的基准测试,为垫脚石提供了在各种非常虚拟的独家过程中应用可解释的机器学习技术,并具有可控的不确定性。
We develop a framework to establish benchmarks for machine learning and deep neural networks analyses of exclusive scattering cross sections (FemtoNet). Within this framework we present an extraction of Compton form factors for deeply virtual Compton scattering from an unpolarized proton target. Critical to this effort is a study of the effects of physics constraint built into machine learning (ML) algorithms. We use the Bethe-Heitler process, which is the QED radiative background to deeply virtual Compton scattering, to test our ML models and, in particular, their ability to generalize information extracted from data. We then use these techniques on the full cross section and compare the results to analytic model calculations. We propose a quantification technique, the random targets method, to begin understanding the separation of aleatoric and epistemic uncertainties as they are manifest in exclusive scattering analyses. We propose a set of both physics driven and machine learning based benchmarks providing a stepping stone towards applying explainable machine learning techniques with controllable uncertainties in a wide range of deeply virtual exclusive processes.